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Abstract

This document is a final report of the research completed by The Brown

University Graphics Group under NASA Research Grant NAG 2-830, April

1993 to March 1997. The focus of this grant was to experiment with novel

user interfaces for immersive virtual reality (VR) systems, and thus to

advance the state of the art of user interface technology for this domain.

Our primary test application was a scientific visualization application for

viewing computational fluid dynamics (CFD) datasets. This technology has

been transferred to NASA via periodic status reports and papers relating to

this grant that have been published in conference proceedings. This final

report summarizes the research completed over the past ),ear, and extends

last year's final report of the first three years of the grant.
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1 Project Description

The primary goal of this research project was to develop novel user interface

techniques for use in immersive virtual environments (IVEs). We tested these

techniques in an application that creates and manages visualizations of three-

dimensional computational fluid dynamics (CFD) datasets. We have been developing

techniques for use with both 2D desktop and immersive virtual reality (VR)

environments, though prior to this past year, we had only tested them on the desktop.

We did not attempt to build a complete scientific visualization system. Rather, we

addressed the lack of easy-to-use user interfaces commonly found in existing

commercial CFD visualization applications including [1][9] [16]. The user interfaces for

these applications are generally implemented and used within the familiar two-

dimensional desktop metaphor and consist, therefore, of interface primitives like

menus, buttons, sliders and so forth. These widgets collectively reflect the current state

of a visualization and provide a means for controlling its parameters. While these

interfaces are often complete (i.e., one is able to change any part of a visualization),

they can also be difficult to use. A typical user interface to a commercial application

consists of many 2D interface widgets which both consume large amounts of screen

real estate and clutter the workspace.

In designing the user interfaces for this grant, we have adopted a different

strategy which stresses the so-called "direct manipulation" of the visualization tools

themselves. This approach obviates the need for so many 2D widgets by placing the

controls for parameters like position and orientation directly into the 3D world of the

CFD data itself. In addition, this approach provides a convenient means for combining

related parameters into single widgets. Since the CFD datasets and the techniques used

to visualize them are inherently three-dimensional, we can apply our knowledge of 3D

user interface design to this new domain. The environment we use for this exploration

is our own 3D graphics application development system, called UGA [26].

2 Accomplishments

The research accomplishments of the past year have centered on designing and

implementing novel user interfaces for Immersive Virtual Environments. Our driving

application was a scientific visualization application derived from the Virtual Wind

Tunnel system [5]. The application supports visualization and interaction primarily

through 3D Widgets [7] and was used as a proof-of-concept environment for our

research. The application requires a high degree of user interaction to explore CFD
datasets and served as a useful test environment.

This past year we have done the following:

• Designed and implemented a variety of interaction techniques for IVE systems

- Object selection and manipulation

- Navigation techniques

• Developed a rapid prototyping system for VR input devices

- Enables hand-held widgets

- Facilitates building customized input devices
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• Performed pilot studies to evaluate theseuser interface designs

The remainder of this report will describeeachof the aboveitems in more detail; some
of theseaccomplishments have beenpresented at computer graphics and user interface
conferences.

3 Development Environment

3.1 Software

We have developed two applications with which to experiment with user

interfaces for scientific visualization tasks. These applications were written using our in-

house graphics system, called the Unified Graphics Architecture (UGA) [26]. The first

application was implemented in the FLESH programming language, an interpreted,

object-oriented language developed by the Graphics Group. This language served as an

interface to the underlying functionality of the UGA system. This first application,

which we used for the majority of our user interface experiments on the desktop, was

ideal for this kind of experimentation because one could rapidly prototype new

interaction techniques and widgets. The downside of FLESH, however, was its poor

performance when using it for anything but simple designs.

The Graphics Group then implemented another system, called "trim-lite". This

newer system is written in C++ and consists of a relatively small set of libraries which

include classes for many of the same components of 3D graphics applications that the

FLESH programming language supported, including geometric objects, cameras, lights

and input devices. We chose C++ for this system because it afforded much higher

performance than the interpreted FLESH language did. As our interface designs

became more complex, we needed this increased performance to properly evaluate

new interface designs.

Applications written using the "trim-lite" libraries are compiled and thus run

more efficiently than FLESH applications. As part of this grant, we added a library to

"trim-lite" which performs all of the low-level scientific visualization functions of our

prior application, and designed a framework in which we could continue our user

interface experiments in IVEs. The resulting application, which is still under rapid

development, includes many of the user interface components of the earlier FLESH

application. However, we have focused more strongly on implementing new

techniques specifically tailored for immersive virtual reality.

We have tested our system with relatively simple (less than 500,000 points) steady-

flow datasets using both regular and curvilinear computation grids. The majority of

our work has been done on a curvilinear dataset of airflow velocity (speed and

direction) past the body of the Space Shuttle.

3.2 Hardware

On the desktop, we have used both conventional hardware (CRT and 2D mouse),

and "fishtank virtual reality" hardware, including a Logitech 6D mouse and

StereoGraphics LCD shutter glasses.

Page 2



Three-Dimensional User Interfaces for Immersive VR

In our VR lab we primarily use a single Ascension Bird tracker for one-handed

input in conjunction with a Binocular Omni-Orientation Monitor (BOOM) for head

tracking and stereoscopic display. We also used our Virtuality Head Mounted Display

(HMD) which we acquired in the last month of the grant period. The tracker is

equipped with three buttons for additional input. In its default configuration, the

tracker controls the position of a simple 3D crosshair cursor in the virtual world.

We also have a glove input device which can be used to input more complex data

to the application such as postures and gestures of the hand. We have not yet used the

glove directly within our scientific visualization application due to the significant

calibration time and inconsistent data we receive from the device (e.g., we have had

significant trouble repeatedly recognizing anything but a few extremely different

postures). We have found attaching trackers to points of interest (e.g., a user's

fingertips) is an effective alternative to using the dataglove for the interaction

techniques we have developed.

4 3D Widgets and Interaction Techniques

In the following sections, we will discuss the various user interface issues and

designs that we have worked on over the course of this research. We begin with a few

definitions, and present a taxonomy of 3D graphics application tasks, then discuss our

user interface design methodology, and finish with descriptions of the specific

interaction techniques and 3D widgets that we have implemented.

4.1 Definitions

A widget is an entity which possesses both geometry and behavior [7]. We define

the geometry of a widget to be its visual appearance when rendered to an output

device. The behavior of a widget represents its functional role in an application and

defines both how it reacts to user interaction as well as how it affects aspects of the

application environment when manipulated by a user. At this fundamental level, 2D

and 3D widgets are identical. However, on a practical level, they differ in that 3D

widgets exist in a 3D scene whereas 2D widgets exist within a 2D windowing

environment. We do not consider 2D widgets that have a 3D "look" (typically achieved

with drop shadows) to be true 3D widgets.

According to this definition, a wide range of entities can be called widgets. In

practice, we divide this spectrum into specific categories (Figure 1). At one extreme are

widgets with geometry but no behavior. These entities, which we call "primitive

objects", are the building blocks of virtual environments, and are defined by their

geometric attributes (position, size, orientation, color, etc.). When modified by a user,

there are no side effects in the surrounding environment.
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Figure 1: The spectrum of geometry and behavior in widgets. The ratio of geometry to behavior
determines whether the object is a primitive, an interaction technique, or a "true" widget with a

combination of both geometry and behavior.

At the other end of the spectrum are widgets with behavior but no geometry. The

purpose of these entities, or "interaction techniques," is to translate raw user input

(e.g., mouse deltas, button presses, etc.) into meaningful actions in a 3D scene. For

example, an interaction technique for panning a camera in a desktop application

converts 2D mouse deltas into transformations which are applied to the camera

viewing a 3D scene. Likewise, an interaction technique for manipulating a 3D object

converts mouse deltas into transformations which are applied to the object. Generally,

the only feedback that an interaction technique supplies is its actual effect on the scene

(e.g., the motion of the camera or object being manipulated).

In the middle of the spectrum lie an array of "true" widgets which contain a more

balanced mix of geometry and behavior. Like interaction techniques, the behavioral

components of these widgets serve to transform raw user input into values which are

meaningful to primitive objects. The geometry of a widget acts as a virtual input device

through which we can indirectly modify attributes of an object that may be unnatural

or impossible to access directly through a simpler interaction technique.

Both interaction techniques and widgets can be used to modify spatial or non-

spatial parameters of primitive objects. Widgets with geometry are often designed to

provide feedback to the user, though this is not always necessary. For example, the

rake widget, described later, utilizes a one-dimensional slider to set the number of

streamlines along its bar. The position of the slider simultaneously determines the

distance between the streamlines on the bar and provides feedback to the user about

this spatial quantity.

4.2 Taxonomy of Tasks

In interactive 3D graphics applications, tasks can be classified according to the
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following three categories:

• selection (of objects)

• manipulation (of objects, parameters, etc.)

• navigation (of viewpoint)

Most of the interaction techniques and widgets that we have implemented fall neatly

into one of these categories. Section 6 describes the techniques that we have

implemented for our scientific visualization application.

This taxonomy expands on Robinett and Holloway's [23] presentation of the

manually-controlled actions that may be implemented in an IVE which involve

changing the location, orientation or scale of either an object in the IVE (manipulation)

or the user herself (navigation). In Robinett's treatment, the selection task is implicitly

included as part of manipulation. We have chosen to make selection a unique category

because as with manipulation and navigation tasks, there are a wide variety of unique

methods for performing this task.

5 Design Strategy

Our strategy for developing interaction techniques for immersive VR was to

facilitate user interaction with 3D widgets. Three dimensional widgets (defined in

Section 4.1) are used frequently in direct-manipulation applications and the basis for all

visualization tools in our test application. Facilitating interaction with 3D widgets is a

more complex task than facilitating interaction with single objects because a 3D widget

typically has multiple components with which the user can interact. Often these

components are designed to minimize intrusiveness in the scene. Consequently, widget

components are close to one another and as small as possible. There is a close

relationship between 3D widget design (how small and compact a widget is) and the

effectiveness of the interaction techniques that will be used to interact with the widget.

An interaction technique for use in an immersive environment with 3D widgets must

enable precise object selection, intuitive subsequent manipulation, and effective

navigation through the environment. In addition, we have followed the General Design

Strategies reported in last year's final report of work supported under this grant.

This strategy led us to the development of improved software techniques for

interaction as well as new hardware devices that allow rapid prototyping of "hand-

held" widgets and the construction of custom input devices (see Section 6).

6 Implementations

The following sections describe implementations of the user interfaces that we

have experimented with over the course of this research. When appropriate, we discuss

how particular design decisions were made, and how these designs relate to the design

strategy described above. The first three sections address each of the tasks outlined in

the taxonomy above. The final section describes our rapid prototyping system for input
devices.
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6.1 Selection

Selection is one of the fundamental tasks in any interactive graphics application.

Through selection, users indicate which objects they are interacting with and specify

which parameters they wish to view or modify. The method used to select an object,

however, differs greatly depending on the type of input and output devices at hand

and the application itself.

6.1.1 Desktop

There are a variety of configurations of input and output devices for desktop

systems, ranging from the conventional CRT and 2D mouse combination, to more

elaborate stereo displays and 3D input devices. Selection techniques for the latter will

be discussed in the next section since many of the issues are the same.

When using conventional desktop hardware (2D mouse input and standard CRT

output), the method we usually utilize for selection is ray intersection. We construct a

ray based at the focal point (viewpoint) of the camera through the point on the image

plane which corresponds to the position of the 2D mouse cursor. By testing for

intersections between this ray and all of the geometry in the scene, we can determine

which object the mouse cursor was "over" in the 2D projection of the scene, and select

that object (usually in response to a button press). We have found that this technique is

very effective on the desktop because from a perceptual point of view, it emulates the

"point and click" behavior of 2D desktop windowing systems. Consequently, this is a

general method of selection for desktop applications that have both 2D and 3D

components. Also, since the mouse is a virtually noiseless and thus very precise input

device, we are able to select very small objects which project to only a few pixels on the

screen. As we will see, this is not the case for IVE input devices.

6.1.2 Virtual Reality

Just as on the desktop, selection techniques are used in IVE's to specify which

object(s) in the environment the user wishes to interact with. In the real 3D world, of

course, people "select" objects by touching them with their hands, or indicate a

particular object in the distance by pointing in its general direction. When designing

and implementing selection techniques for virtual reality applications, we can look to

this real world human behavior for inspiration. However, in VR applications, the

selection task is complicated by a number of factors, including limitations imposed by

input and output devices as well as by software techniques.

In VR, user actions are mediated by input and output devices which are often

imprecise and which either lack or distort perceptual cues that we take for granted in

the real world such as haptic feedback, stereopsis, field of view, texture (both visual

and tactile), and sound. Display devices like the BOOM and our HMD provide

stereoscopic views, but some people are not able to resolve depth from this type of

display. Other head-mounted display devices typically provide fairly low-resolution

images, making it difficult to resolve small objects. Magnetic 6D trackers introduce

problems as well. First, they are not always accurate in many real environments
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becausethey are adversely affectedby metallic objectsand electronic devices in the
physical environment. This can causesignificant registration error between the actual
and displayed position of the tracker. A number of techniques have been proposed and
implemented to correct for static distortions (those that do not changesignificantly
over time) of this type [4][11], including amethod developed here at Brown [12].

Secondly, the data reported by magnetic trackers is somewhat noisy, so even
when they areheld perfectly still, the 3D cursor in the sceneappears to randomly jump
around. We found the magnitude of this noise in our tracker is approximately 0.1".The
combination of hardware and software used to convert magnetic fields into position
and orientation values that canbe used by our software introduces lag into the system.
This results in a delay between the actual tracker movement and the display update in
the IVE. As shown in [20], lag contributes significantly to error.

On the software side, the selection tests used by most virtual reality applications

consist of precise, mathematical tests (e.g., ray intersection or point enclosure). While

we have found that these seem to work well for desktop applications, they are not

nearly as successful in IVE's. As our pilot studies have shown, this is in part due to the

physical limitations of the tracking and display hardware we use. However, there may

also be more subtle phenomena at work. For example, since IVE's strive to provide an

experience which mimics many of the perceptual qualities of our real-world experience

(including stereopsis, wide field of view, etc.), users of IVE applications may thus

presume that they can interact with objects in an IVE in the same way that they interact

with objects in the real world. Unfortunately, computers are not yet adept at inferring

user intentions exclusively from the kind of vague indications which humans are

accustomed to using for communicating with one another in the real world (pointing,

gesturing and speaking, for example). As a result, designing effective selection

techniques for VR applications is a tricky process. Our general design methodology has

been to look to the real world for examples of how people select, indicate or

manipulate objects, and transfer qualities of these interactions into software techniques

in an IVE. Often, the resulting interaction technique in an IVE is very different from its

real world source since the software technique must both cope with limitations of the

hardware devices, as well as exploit the "magical" properties of an WE (such as the

ability to manipulate objects at great distance, which can not easily be done in the real

world).

In the following sections, we will describe some previously existing selection

techniques (Section 6.1.2.2 through Section 6.1.2.5) and the selection techniques we

have developed (Section 6.1.2.6 through Section 6.1.2.9). We also discuss the

advantages and disadvantages of each technique.

6.1.2.1 Virtual Input Devices and Physical Props

A virtual input device in an IVE is analogous to the mouse cursor on the desktop.

It is a piece of geometry which represents the state of the input device(s) currently

being used. In the case of a single 3D tracker input device, the virtual input device

(VID) might be a simple crosshair cursor (Figure 2a). A more complex VID is a glove

driven by a glove input device where the geometry drawn reflects the user's current

hand posture. Generally, the appearance of a VID depends on a number of factors,
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including the type of physical input device, the task it is being used for, and any

physical modifications that have been made to the device itself (props). Some of the

selection and manipulation techniques that we have implemented were motivated by

observations of how people operate with tools in the real world and are implemented

with these metaphors in mind. Therefore, when we have felt it appropriate, we have

used props to emphasize the metaphor. In other research [13], props have been shown

to aid users' understanding of user interfaces for virtual reality applications.

We make use of a number of different props in our lab, including a drumstick and

a ski pole handle. We modify the geometry of the VID to suggest the shape of the prop

(Figures 2b and 2c). Though this is not strictly necessary, it is often helpful because a

user can more easily correlate what she sees in the WE with the physical sensations she

perceives of the actual object in her hand.

a b c

Figure 2: Three types of virtual input devices, a) a simple crosshair cursor; b a cone (used
with the drumstick); c) a cylinder (used with the ski pole handle)

6.1.2.2 Touch

In terms of borrowing ideas from the real world, this might be considered the

most straightforward selection technique since humans are very familiar with touching

objects first in order to manipulate them. From an implementation point of view, the

input to this technique is also fairly simple, requiring only a 3D position (e.g., from a

tracker) and a means of signaling to the application when to select an object (e.g., a

button press, voice command, etc.). We have implemented two variations of the touch

selection technique in our system. In the first, the position of the tracker determines the

placement of the 3D cursor used for the selection test. When the 3D cursor is placed

inside the geometric boundary of an object, that object can be selected by pressing a

button on the tracker. We may use other input methods such as speech recognition to

replace the button as a way for the user to signal selection. This technique is similar to

touching objects in the real world, except that there is no haptic feedback (i.e., subjects

can not feel the object in the virtual world). One drawback of this technique is that it

requires that the desired object be within reach. If the object is out of reach, then the

subject must first navigate to the vicinity of that object in order to select it, and the

selection task thus becomes a two-step process.

The second variation was inspired by observations of glass blowers who

manipulate objects at a distance with long sticks so as not to be burnt by the hot glass.

In our implementation, we use the drumstick prop, which emulates the glass blower's

Page 8



Three-Dimensional User Interfaces for Immersive VR

tool, and place the 3D cursor at the end of the corresponding VID in the virtual

environment. Using the drumstick increases the distance from the user that objects can

be selected, but may make it more difficult to select objects at close range due to the

awkwardness of holding the stick in these positions. It is still not clear which of these

techniques is better overall, but they clearly each have particular strengths and

weaknesses. User studies will, of course, help to determine which approaches are better.

Note that due to noise in the position values reported by the tracker, coupled with

normal jitter in the user's hand, the VID in this technique (and in others) appears to

jump around even when attempting to hold it perfectly still. This phenomenon

indicates that objects must be larger than some minimum size in order to be selectable

with this technique (or that the technique itself must be modified). In the second

variation, since the orientation of the tracker influences the position of the end point of

the VID which is used for the selection test, this technique is susceptible to errors from

noise in the orientation of the tracker as well as positional noise. In practice, these

factors present severe usability problems which we have attempted to alleviate by

modifying the technique (see the technique described in the next section).

Testing whether a given input point is within the geometric boundary of an object

can be computationally very complex. To reduce this complexity, we can use a

simplified geometric representation for objects in the selection test. In our first

implementation, we used a sphere scaled to the 3D extent of the object. With this

approximation, a simple analytic test could determine roughly when the cursor was in

the vicinity of the target object. However, this simplified technique posed problems

when the actual geometry of the visible object was very different from a sphere (e.g., if

the object is convex). We have also used a polygonal collision detection system called

"I-Collide" developed at UNC, Chapel Hill [6], which can accurately detect exact

collisions between a VID (represented by a geometric object) and the objects in the
scene at interactive rates.

6.1.2.3 Touch Plus Intersection Ray

In our evaluations of the touch method described above, we found that even

though it seems like a very natural technique, and seemed to work fine for selecting

large objects, it is nearly impossible to use it to select small or narrow objects. We have

augmented the touch technique to remedy this shortcoming. In the basic technique, we

simply test whether the cursor is inside the geometric boundary of each object (using

either the simple spherical test or the true collision detection method). Due to the noise

in the tracker and instability in the user's hand, this technique is extremely susceptible

to the effects of temporal aliasing. Since there is no haptic feedback in this system to

alert the user that she has touched a given object, the VID is allowed to pass through

any objects. If the frame rate is not sufficiently high, or if the noise in the tracker and

user's hand is significant compared with the size of the target object, there may be cases

when the user feels that she has placed the cursor in the correct position, but still can

not select the object. This situation most often occurs when at time t, the cursor is either

inside the object or just to one side of it (Figure 3). Then, at time t+l, the cursor has

passed either outside the boundary of the object or to the opposite side. In the touch

technique, when the button is pressed at time t+l, the selection test obviously fails 1 (it
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can still succeed in some cases if the approximate spherical test is used). However, if

we consider the line segment between the sample point at time t and the position of the

tracker at time t+l, we can determine which object the cursor passed through by

looking for intersections between this line segment and all of the objects in the scene.

When the button is pressed at time t+l, we select the appropriate object.

b

intersection

point +

" -i .... _- "

time t time t+l time t+2

Figure 3: Augmenting the touch selection technique. At time t, the cursor is either inside the

geometric boundary of an object (a), or just to one side (b). At time t+l, the cursor is

outside the object (a), or on the opposite side (b). Finally, at time t+2, the cursor may

have entered a second object (c). The dotted line segments in b and c are tested for

intersection with the object.

Adding this heuristic does not by itself quite make a successful technique because

if the user waits until time t+2 before pressing the button (which is likely considering

each frame is displayed for less than 0.1 second), then the line segment between the

two sample points may not intersect any objects. We have thought of two possible

solutions to this problem. First is to "remember" the last object that was intersected for

some time interval (1/2 to one second) during which any button press will select that

object. This method would still fail if the time between frame updates was longer than

the memory interval. This will not occur in an WE because the frame rate must be

higher than 10 Hz.

Second, we might use a spatial measure to determine which object to

"remember." That is, until the cursor travels more than a certain distance away from

the last intersection point, a button press will select the last object that the cursor

passed through. Of course, both the length of the time interval and distance travelled

by the cursor should be determined by user studies. While we have not yet determined

the optimal parameters, our pilot studies do indicate that the addition of these

heuristics greatly improves the usability of the touch technique.

1. It is also possible that at time t+l, the cursor has entered the boundary of an adjacent object, in which

case, that object would be selected instead of the intended one.
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6.1.2.4 Laser Pointer

This technique gets its name from real laser pointers which are used in darkened

rooms to point out distant objects. It uses ray intersection to perform selection similar

to the desktop selection technique described earlier. In this technique, however, the

base point and direction of the selection ray are determined by the position and

orientation of the tracker, respectively. The ray points down one of the principal axes of

the tracker's coordinate system (we have chosen the z axis). We generally use this

technique with the drumstick prop, holding it as if it were a laser pointer. The physical

prop reinforces this metaphor.

In our pilot studies, we found that this technique, though easily learned,

presented severe problems when trying to select small objects even at close range. The

noise from the device coupled with the inherent instability in one's hand causes the

direction of the intersection ray to fluctuate by as much as +5 degrees. At a distance of

three feet, this error amounts to 6.25 inches, suggesting that objects any smaller than

this are effectively unselectable at this distance. The techniques we describe below
introduce methods to reduce the adverse effects of tracker and hand noise.

6.1.2.5 Target (Laser Pointer from Eye)

The target technique is also based on ray intersection, but borrows even more

from the 2D desktop techniques than the laser pointer. In this technique, we cast a ray

from the viewpoint, controlled by the position of the user's head, through the 3D cursor in

the IVE, determined by the position of the tracker. This technique was inspired by and

is similar to looking at a target through the sight on the barrel of a gun, or to holding

up one's thumb to measure the size of a distant object. An important feature of this

technique is that the user only need to specify two degrees of freedom when selecting

objects instead of the usual three or more that other techniques (e.g., touch and spotlight

selection) require. Although there is still noise in the position of the tracker, and jitter in

the user's head and hand, we have observed in our pilot studies that the distance

between the head and hand, which determine the basepoint and direction of the

intersection ray, respectively, do in fact reduce the overall error in this technique

(compared with the laser pointer which is adversely affected by both positional and

rotational noise in the tracker). Given the absence of haptic feedback in our system,

users may also find it more "natural" to select objects from their point of view than

from their hand (this may be similar to the decreased accuracy of shooting a firearm

"from the hip" compared with using the sight on the barrel).

When using this technique, we must also consider the fact that a stereoscopic

image of a scene is produced from two separate eye points (cameras) simultaneously

that are positioned side by side to match the physical configuration of the human eyes.

Since the base point of the intersection ray in this technique is controlled by an eye

point, we must decide which eye point to use. We know that most people have a so-

called "dominant" eye which they favor over the other when performing tasks in

which a single point of view is required. A simple test can determine which eye is

dominant, and we can adjust the technique appropriately.
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6.1.2.6 Aperture

The aperture selection technique [10] augments the target technique with an

additional feature to help alleviate the adverse effects of error from noise. The visual

representation of this technique consists of a circular aperture centered on the cursor

point which is marked with a crosshair (Figure 4a). We have experimented with two

uses of the aperture. The first (Figure 4c) places the aperture at the location of the 3D

cursor, and aligns it with the film plane of the camera viewing the scene. As with the

target method described above, a user places the aperture "over" the object(s) she

wishes to select, then presses the button on the tracker. This configuration can be used

with or without the drumstick prop, and the VID is modified appropriately•

C -_

I •

• I
I
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." "conic , ,

aperture .-'"volume .'-"~'"
circle .•"

point ,"_

d
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• I

aperture- conic',
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Figure 4: The aperture technique, a) The basic aperture geometry, b) Small circles represent

the positions of intersection rays cast through the center of the aperture and

representative points on the perimeter, c) The conic volume described by the viewpoint

and aperture, d) The conic volume described in the "flashlight" configuration. Both c and
d are shown with the drumstick VID. In our implementation, the conic volume is semi-

infinite.

In the second configuration (Figure 4d) we use the drumstick prop and place the

aperture geometry at the end of the stick, but this time align it with the plane

perpendicular to the axis defined by the stick (similar to the intersection ray in the laser

pointer technique).

In either configuration, the combination of a direction vector and the aperture

circle defines a conic volume in space• In the first configuration, the apex of this cone is

coincident with the eyepoint of the viewer. Any object which appears from the user's

point of view to be inside the circular aperture can potentially be selected. In the

second configuration, the effect is more like a flashlight sweeping through a region of
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space; any object "illuminated" by the flashlight is potentially selectable. A similar

technique using the flashlight metaphor was implemented by Liang [19] in the JDCAD

system, but the from-eye version was not implemented.

The radius of the cone can be easily modified in the first configuration simply by

drawing the VID closer to or further from one's eye. In the "flashlight" configuration,

however, an external control is needed to change the radius of the aperture circle.

Currently, we adjust this parameter from a command line interface, but we have

envisioned a number of possibly more attractive possibilities including using voice

recognition, a hardware dial on the physical input device (see the Lego Interface

Toolkit described in section Section 6.4), or twisting the stick around its long axis (the

central axis of the conic volume). We did try this last technique, but quickly discarded

it after we found it very difficult to continue pointing the stick in the same direction

while twisting it.

Intuitively, the objects that the aperture-based techniques should select are those

that fall within the conic volume. This can be expressed as a test for intersections

between the conic volume and all of the objects in the scene. We have tried the

following techniques:

• Ray intersection from the base point through center of aperture (by itself, this is a

degenerate case equivalent to the laser pointer or target techniques).

• Ray intersection from the base point through representative points on the aperture

circle (Figure 4b).

• Project vertices and edges of objects in the scene onto the plane defined by the

aperture circle.

• Using I-Collide to detect interpenetration of the conic volume with the objects in
the scene.

I-Collide obviously is the technique of choice because it returns an exact solution,

though in some complex scenes (e.g., with isosurfaces), it may be too slow because of

the large number of polygons. In most of the simple scenes we have used it in,

however, I-Collide seems to work very well and at interactive rates.

The first two tests above use the same ray intersection tests that the laser pointer

and target techniques use. Computationally, ray intersection is inexpensive compared

with projecting vertices and edges of objects in the scene onto a plane, but can easily

miss objects that do lie within the boundary of the aperture circle and thus should be

selected. The vertex and edge projection tests reduce the 3D intersection test to a 2D

problem. Once the vertices and edges are projected onto a plane, we need only

determine whether they fall within the circle. However, this technique is

computationally very expensive and currently can not be used in complex scenes at
interactive rates without hardware acceleration.

Since the aperture technique defines a volume of space, it is possible that we may

have multiple candidate objects for selection. In the event that more than one object lies

inside the conic volume, we may either select all of the objects, or identify a single

object for selection based on some criteria. In practice, there are a variety of

mathematical tests to determine which of a number of objects to select. One possibility

is to choose the object whose center point is closest to the base point of the intersection
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ray (either the viewpoint or location of the tracker, depending on the particular

configuration in use). This method presents a problem, however, when a user attempts

to select an object near the center of the aperture, but a closer object is partially inside

the edge of the circle. In this case, both objects are candidates, but the second, closer

one will be selected because it is closer to the viewpoint.

Another possibility for choosing a single object among many potentially

selectable objects, and one that appears to be the most intuitive, is to select the object

closest to the ray passing through the center of the aperture circle. Note that this object

may not be the closest object to the viewer. This method recognizes the user's intuition

(backed up by anecdotal evidence in our user studies) that the more "centered" an

object is in the aperture, the more likely that it will be selected.

A third option is to select an object based on its apparent size (e.g. select the

largest object in the aperture). In practice, this is not such a good option, since it may be

difficult to select a small object next to a larger one. Also, if two objects of roughly the

same size are at different distances from the viewpoint, their apparent size will, in a

perspective projection, be very different as well. Using the size test to determine which

object to select may work in this case, but a test based on distance would probably

work just as well. As mentioned, in practice, we have found that the distance test is

more appropriate than an apparent size test.

Note that this technique is also subject to modification based on each user's

dominant eye.

6.1.2.7 Glove-Based Interface for Aperture

Though we have not implemented it yet, we have designed a glove-based

interface to the aperture technique which we feel is more natural than the two

configurations described above. This technique utilizes the posture recognition

software in our system to identify when the user has shaped her hand in a pinching

posture. When this posture is recognized, the aperture geometry is drawn between the

index finger and thumb. As with the first configuration of the basic aperture technique,

the aperture is aligned with the film plane. Two advantages to this technique are that

the user does not have to hold a prop, and also that the size of the aperture can be

adjusted simply by moving one's thumb and index finger further apart or closer

together.

6.1.2.8 Orientation

The orientation selection technique [10] selects objects in an IVE by comparing the

orientation of the tracker with the orientations of objects in the scene. Any objects

which approximately match the orientation of the tracker are candidates for selection.

The inspiration for this technique was the observation that in the real world, when we

attempt to grab an object with our hand and fingers, we first must configure our hand

so that it conforms to the part of the object we reach for (e.g., the handle of a cup, a

telephone, or the middle of a bar, etc.). At a very gross level, the task we perform is

matching the orientation of our hand with that of the target object. We can approximate

this with a simple mathematical test.
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According to this technique, the shape of an object plays a direct role in

determining how it can be selected. In the UGA system, primitive objects initially have

a canonical uniform scale. Given this property, the scale components of an object's

current transformation matrix (CTM) can reveal information about it's shape. Long thin

objects and flat objects can be easily identified by significant differences in their x, y

and z scale components. Of course, objects which are long and thin but which are not

aligned with a principal axis will not be so easily identified. In general, determining the

shape of an object may be a harder, more subjective problem that involves at least an

analysis of the object's geometry, and perhaps even some higher-level semantic

knowledge about important features of the object (such as the handle of a cup or knob

on a door). However, for some simple cases, we can get reasonable behavior under the

current scheme.

a b

Figure 5: Orientation selection technique. For this technique the cursor geometry is a pair of

parallel plates which indicates the current orientation of the tracker. This cursor may be
used by itself or in conjunction with a VID such as the drumstick, a) shows the cursor

orientation that would select long, skinny objects like the bar of the object in the middle

of the figure, b) shows the cursor orientation that would select short, wide objects, like

the disc on the bar. The ball at the end of the bar presents something of a problem for

this selection technique. This can be remedied by adding a heuristic which identifies

uniformly-scaled objects and compares distance to the cursor rather than orientation.

In our application, we tested this technique on the rake widget, which consists of

a bar (a long thin cylinder), a slider on the bar (a flattened cylinder), and a ball at one

end of the bar (a small sphere). We modified the geometry of the VID for this technique

so that the orientation of the tracker was clearly represented (two parallel flat blocks

placed side by side). As the user rotates the tracker, so does the cursor rotate and thus

indicate the kinds of objects that can be selected (Figures 5a and 5b).

Note that if this selection technique uses only the relative orientations of the

tracker and objects in the scene to determine which objects it will select, and not their

respective positions, it can select objects that are a significant distance from the tracker

(or even outside the view). In our initial tests, we found this behavior unnatural. To

cope with this drawback, we used orientation as a means to disambiguate which single
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object should be selected when there were multiple candidates for selection (as is the

case with the aperture or flashlight techniques where all objects that fall in a conic

volume are candidates for selection).

The orientation of objects which are uniformly scaled, like the sphere at the end of

the bar, is not readily apparent. In these cases, this selection technique uses only the

distance measure to determine selectability. In this particular instance, a glove-based

posture recognition interface might be more effective - the user would simply shape

her hand to fit the desired object. Such an interface might compare the convex hulls of

the user's hand and nearby objects and pick the one with the closest match.

6.1.2.9 Image Plane Techniques

We have developed and implemented a variety of novel selection techniques for

IVEs. We have named these techniques "image plane" selection techniques [22]. When

using an image plane selection technique, a user selects an object by interacting with

the 2D projection of an object as opposed to the actual 3D geometry of an object. The

desktop analog is the use of a mouse to interact with objects in a 3D scene based on

their projections on the monitor screen.

Consider the task of selecting a streamline widget that is beyond a user's reach

(see Figure 6). Using a film-plane selection technique, the user selects the widget by

positioning her hand in the 3D scene so that the projection of her index finger on her

image plane is positioned on top of the projected image of the widget. The user does

not need to navigate to the object or need information about the actual size or distance

of the object to interact with it. In addition, the user need only specify two degrees of

freedom instead of three or more as required by other techniques.

We have implemented several examples of image plane selection techniques (see

Figure 7). In the Head Crusher technique, the user positions her thumb and forefinger

around the desired object in the 2D image. We determine which object is between the

user's fingers in the image plane by casting a pick ray into the scene from the user's eye-

point through the point midway between the user's forefinger and thumb.

The Sticky Finger technique provides an easier gesture when picking very large or

close objects by using a single outstretched finger to select objects. The object

underneath the user's finger in the 2D image is the object that is selected. To determine

which object the user has selected, we cast a ray into the scene from the user's eye-point

through the location of the tip of the user's index finger in the scene. Objects

intersecting this ray are beneath the user's fingertip in her image plane.

We extend the notion of using the image plane for selection with the Lifting Palm

technique. We borrowed the idea for the Lifting Palm technique from the famous

optical illusion of a man in the background of a photo apparently standing on the palm

of a man in the foreground. The user selects an object by flattening his outstretched

hand and positioning his palm so that it appears to lie below the desired object on his

image plane. We determine which object the user has selected by finding the current

location of her palm in the scene and imposing a slight offset on it. The ensures that we

check for the object that lies above the user's palm in the image plane. We then cast a
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pick ray into the scene from the eye-point through that position.

Figure 6. Selecting an object using the sticky finger selection technique. The upper left image

shows the first person view of the user selecting the red streamline widget. Below, a

third person view of the user, their hand, and objects in the world are shown. The closest

object on the ray from the user's eye through their index finger is selected.

The Framing Hands technique uses both hands to select objects. Using this

technique the user positions her hands to form the two corners of a frame in the 2D

image. The user then positions this frame to surround the object to be selected. The

implementation for this selection is similar to the Head Crusher's implementation. We
determine the location of the user's hands, and then calculate the midpoint between the

two in the scene's coordinate system. We again cast a ray into the scene from the user's
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eye-point through that midpoint to select an object.

The user can also use the Framing Hands technique to select a group of objects by

selecting all of the objects that lie within the frame formed by the user's hands. This is

similar to the 2D rectangle selection technique used in many desktop apphcations,

except that this technique allows the user to use both hands simultaneously to specify

the desired selection area. The user can quickly and arbitrarily rotate or resize the

frame formed by her hands with a motion of her hands. We can draw the frame

explicitly on the image plane to provide additional feedback to the user for which

objects will be selected.

Figure 7: Image plane selection. The user selects an object by positioning their hand over or

around the target geometry and signaling to the computer to select. The Head Crusher,

Lifting Pahn, Sticky Finger, and Framing Hands techniques are illustrated from top to
bottom, respectively.

There are a few general notes about these techniques. First, the system should

Page 18



Three-Dimensional User Interfaces for Immersive VR

provide explicit feedback to the user about what object will be selected when these

techniques are used. The system can provide this feedback by highlighting or showing

the bounding box of the object that is the current candidate for selection. The user can

use this feedback to confirm that he has positioned his hand correctly for a desired

object before issuing a selection command. An important feature of image plane

techniques is that a minimal amount of visual feedback is necessary since the

relationship between the projection of target object(s) and the user's body usually

indicate exactly which object will be selected. This contrasts the amount of feedback

required by the laserpointer or touch techniques with which the user heavily relies on

some type of feedback to know which object they are currently selecting.

These technique also provide an orientation that can be used to disambiguate the

user's selection when there are a number of candidate objects with distinguishable

orientations (see Section 6.1.2.8). The user's finger(s) provide this orientation for the

Head Crusher, Sticky Finger, and Framing Hands techniques. The normal to the user's

palm is the disambiguating orientation for the Lifting Palm technique.

6.2 Manipulation

Manipulation is a generic term which describes any of a number of ways to

interactively modify the state of objects in a computer application. Manipulation in a

3D graphics context includes applying affine transformations to objects, discrete actions

such as pressing buttons or complex actions like gestures or speech acts which are

interpreted by a user interface as modifications of primitive objects. The key concept is

that manipulation implies interactivity, and that therefore a user interface can be

characterized by the types of manipulations it requires one to perform.

6.2.1 Direct vs. Indirect Manipulation

Most types of manipulation in user interfaces can be categorized as either direct

or indirect. In his classic article on the subject [24], Shneiderman explains that a direct

manipulation user interface is one in which the human user is presented with a visual

model of a problem domain, and that the interaction dialog includes "continuous

display of the object of interest" and "rapid, incremental, reversible operations whose

impact on the object of interest is immediately visible." This definition was proffered in

1983, when the art of graphical user interface design was still in its infancy. It stands in

stark contrast to indirect manipulation found in batch, menu or command-line

interfaces which generally require users to maintain an abstract mental model of a

problem that conforms to a specific specification language (e.g., the command

keywords and syntax). Since this first definition of direct-manipulation, many others

have presented their own versions. For example, Laurel [18] stresses that direct-

manipulation interfaces present the "continuous representation of the potential for
action."

Direct-manipulation interfaces, when implemented well, give users a sense of

being in control of the application, and reduce the cognitive distance between a user's

intentions and the resulting physical actions she must take. By relying more heavily on

visual perception and cognition (through the use of icons and other graphical elements)
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than on abstract thought processes required by text-based command interfaces, direct-

manipulation interfaces can help users be more productive.

As we have experimented with different interaction techniques and widgets for

3D graphics applications, subtle variations of direct-manipulation interfaces have

emerged. In its basic form, users directly control the object of interest and there are no

side-effects. This type of direct-manipulation occurs in a 2D or 3D graphics application,

for instance, when a user drags a shape or geometric object across the canvas or from

one point in space to another. If manipulating this object has additional effects on other

objects in the environment, then it is itself a component of the user interface. In this

case, though the user has directly manipulated the widget, she has also indirectly

manipulated some other part of the environment. Thus, direct-manipulation interfaces

often incorporate and rely on indirect manipulation.

The widgets we use in our test application have significant direct and indirect

manipulation elements. Some of the interaction techniques described earlier, however,

do not provide a visual representation of themselves beside their effect on the scene.

The use of predictive feedback, such as highlighting the object(s) that would be selected

if the user pressed a button, for example, do provide a sense that the user is wielding a

tool which can somehow modify the environment.

Designing good direct-manipulation interfaces is a tricky business, and requires

deep insight into the exact nature of the tasks for which they are developed. A well-

designed direct-manipulation interface can greatly help task execution, but a poorly-

designed one can actually be more difficult to use than a non-graphical, indirect-

manipulation interface. Thus, direct-manipulation does not necessarily equate with

ease of use [15].

6.2.2 Types of Manipulation in 3D Applications

The most common types of manipulation tasks in 3D graphics applications are

inherently geometric. That is, they involve changing the current transformation matrix

(CTM) of 3D objects. Modeling, animation and scientific visualization applications all

provide techniques for modifying the position, orientation and scale of objects, but the

exact interaction techniques and widgets that one uses differ from application to

application. Other attributes may also be manipulated, such as the color or

transparency of an object, or higher-level attributes like the spacing of a gridded floor

plane, or the number of streamlines on a rake in a scientific visualization application.

However, whatever the parameter, a 3D user interface for modifying it almost always

involves some kind of geometric manipulation. In the following sections, we discuss

some of the widgets and techniques that we have developed for modifying parameters

of 3D objects.

6.2.3 Position and Orientation Techniques

Positioning and orienting objects in 3D are two forms of manipulation that are

widely used in 3D graphics applications. Many positioning and selection techniques

designed for use with conventional desktop hardware (a 2D mouse and CRT display)

aim to overcome many of the difficulties which result from using 2D devices for 3D
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interaction tasks. We have used these same techniques as a starting point for VR

interaction and found that while some are still useful, others must be (and have been)

abandoned or at least significantly redesigned in order to be usable in VR. The selection

techniques described above each suggest their own unique form of manipulation once

an object has been selected. We next describes the manipulation techniques we have

designed and implemented.

Image plane selection techniques readily transition to post-selection manipulation

of objects. We identify two classes of objects a user may interact with: objects within

reaching distance and objects beyond the user's reach. Virtual objects within the user's

reach can naturally be directly manipulated through the touch selection technique

(although the lack of haptic feedback is currently an unavoidable drawback). One of

the primary motivations for using image plane techniques is to interact with objects

beyond a user's arm reach. If a selected object is beyond a user's reach, there are two

options for how we might implement object manipulation: it can be moved at-a-

distance or moved in the user's hand after somehow producing the illusion that the

object has moved to the user's hand. To move an object at a distance, we constrain the

selected object to lie somewhere along a line (defined in the same way the original pick

ray was; e.g., from the user's eye point through the index finger for the Sticky Finger

selection technique). Moving an object at a distance typically feels like an indirect

operation and is less natural than a technique in which an object seems to be in one's

hand. There are several alternatives that '"oring" the selected object into the user's hand.

We found the most successful technique was to instantaneously scale the world around

the user's eyepoint such that the selected object is moved to the user's hand. This

approach has the advantage of bringing the world within reach so that the user can

translate the object by directly manipulating the object's position in the scaled world.

When the object is released, the world returns to original scale and position. This

scaling technique is similar to the Worlds In Miniature [25] interaction techniques.

6.2.4 Adaptive Positioning Accuracy of Widgets

During a talk at the Institute for Computer Applications in Science and Engineering

(ICASE) at NASA Langley, Professor John Hughes of Brown University received strong

interest in a proposed novel user interface for manipulating 3D widgets. The translation

of a widget is separated into two components: movement along the axis normal to a ref-

erence geometry (e.g., the space shuttle) and translation in the plane perpendicular to

that same axis. The hypothesis is that users require fine control over the position of a

widget when it is near the surface of a reference geometry where the most dynamic

interactions of fluid flow occur. As a widget is moved further from the surface of refer-

ence geometry, less control is needed as the flow information becomes less dynamic.

Thus, translation of a 3D widget is linear in the plane perpendicular to the normal of a

reference surface and logarithmic along the axis normal to the reference surface. We have

implemented a version of this technique and found it to be an improvement over static

accuracy positioning; especially when exploring data near the shuttle's surface. A diffi-

cultly is identifying proper parameters for how much and exactly when to change the

resolution with which objects are moved.
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6.3 Navigation

In our virtual reality application, we exploit the built-in degrees of freedom of the

BOOM or HMD to provide most of the navigation and viewpoint specification. In most

cases, this suffices because the majority of the objects that we interact with in our test

applications are at close range (5-10 feet away). In case we need to move beyond the

somewhat limited range of the BOOM, however, we use the two buttons to "fly"

forward and backward along the viewing axis. Generally, we "fly" at some constant

velocity, but we have experimented with using an acceleration constant as well so that

we can travel larger distances more quickly.

Image plane techniques can also be used for navigation relative to a selected

object. We place a constraint on the positions of the user's hand and selected object in

the 2D image so that they remain in the same position relative to each other on the

image plane. For example, if the user selects an object with the sticky finger technique,

the constraint will keep the object under the user's index finger in the 2D image.

Because the position of the selected object is held constant in the 3D scene, we maintain

this constraint by translating the user to some position along the vector from the

selected object through the user's index finger. This technique is similar to Orbital

viewing [17]. However, in their implementation, the user is required to move his head

to orbit the selected object. In our implementation, the user orbits an object by moving

their head and hand at the same time. Unlike orbital viewing, our implementation

permits the user to freely look around while orbiting an object. The distance of the user

from the selected object can remain the same as it was when the object was selected or

can dynamically be changed. We have used a linear function that moves the user closer

or further to the selected object when the user moves her hand closer or further,

respectively, from their viewpoint. In this implementation, if the user moves her hand

half the distance to her eye-point, she moves to half the original distance to the selected

object.

6.4 Rapid Prototyping of Input Devices

In addition to developing new software techniques for interacting in immersive

virtual environments, we have developed a rapid prototyping system for physical

interaction devices. Because of the increased complexity of 3D interactive environments

and the lack of standard interactive tools, designers are unable to use traditional 2D

hardware in 3D virtual environments. As a result, designers must create entirely new

interaction devices, a slow and expensive process. Designers must choose between non-

functional device mock-ups, and functional prototypes which are not easily modified.

To fully understand the usefulness of a given design and advance the technology of

virtual reality interfaces, designers must be able to quickly prototype malleable,

functional input devices. The Lego Interface Toolkit [2] allows designers to experiment

with the construction of new 3D interaction devices both quickly and inexpensively.

We tested our toolkit in our implementation of the virtual windtunnel. The virtual

visualization tool used was a rake. Traditionally, the user controls the position and

orientation of the rake with a hand-held 6-DOF cursor and a push-button. With the

other hand, the user controls her position with a BOOM viewing device. The user

varies the parameters of the rake widget (length, number of streamlines, position,

Page 22



Three-Dimensional User Interfaces for Immersive VR

orientation) using the 6 DOF tracker and an interaction technique like those described

in Section 6.1 and Section 6.2. The user grabs the rake, positions and orients it, releases

it, adjusts the size of the rake and density of the streamlines using geometry widgets

and then re-grabs the rake to continue exploration. Because of the noise involved in 3D

devices, this can be inconvenient and the rake can be difficult to reacquire once it is

released.

One alternative to this traditional approach is procedure is to add physical dials

or sliders that are dedicated to controlling the various aspects of the rake widget to

another physical hand held object representing the rake frame. This allows

modification of the rake's parameters while maintaining control of the rake's position

and orientation. Given this hardware, the designer must decide how many controls are

appropriate and where to place them. Although some of the ergonomics of various

arrangements can be user-tested without being hooked into the system, functional

models provide the designer and user with a more complete picture of the strengths

and weaknesses of a design. To illustrate the control dilemma, we prototyped several

devices which allow the user to manipulate the parameters of the rake without

releasing it (see Figure 8).

We have found that although the prototype widgets allow quick assembly of

interaction hardware, they are not suitable for prolonged use. The devices are sturdy,

but not as sturdy as machined or molded parts. In addition, the input is not precise

enough for most applications. The toolkit did, however, allow us to get a general idea

of which sorts of devices are usable while assisting in the rapid prototyping process.

t

Figure 8. A hand held rake widget. Various devices prototyped using the Lego Interface

Toolkit. The top device uses the two dials to control rake length and streamline density.
The middle uses a single slider for both functions and a button to chose between them.

The bottom widget uses a slider to control length, a dial for density and a button to

retain the 3D cursor functionality of the original widget.

7 Evaluation

Numerous guidelines for user interface design have been proposed and

implemented for windows, icons, menus and pointers (WIMP) interfaces on desktop
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computers, including those for Macintosh, Windows, X and others. This style of

interface is the accepted standard for most desktop operating systems and applications

today. In contrast, the discipline of user interface design for interactive 3D graphics

applications is still young compared to 2D UI design. Although many interaction

techniques have been implemented and used in interactive 3D graphics applications,

little is known about which techniques are successful and why. This is partly because

very few formal studies have been performed to test these interaction techniques

[13][14].

Since our system facilitates rapid prototyping of user interfaces, the interaction

techniques and widgets that we have implemented for this project were produced over

multiple iterations of design, implementation and evaluation. Most often, the

evaluation phase consisted merely of reviews by members of the research team of

incremental changes to the interface. We did perform a set of informal pilot tests and

user studies, however, over the course of this grant which focused on evaluating

specific interfaces. In these studies, we attempted to determine which of a variety of

possible designs was qualitatively best for the users as well as how difficult it was for

users to learn to use a technique.

7.1 Image Plane Techniques

We have performed informal tests with ten users to determine whether or not

people have problems using the image plane interaction techniques. No user has had

any trouble understanding how the techniques work. Every user has been able to select

and manipulate objects and to navigate around the scene. Although our informal tests

have been positive, we feel the need for more definitive user studies to determine how

well these new techniques work in relation to previous techniques like laser pointing

and spotlight selection.

Bowman et al. have presented a user study comparing pointing and gaze directed

navigation techniques for navigating in immersive virtual environments [3]. They

studied how effective each technique was for translating to a target object (absolute

navigation) and around a target object (relative navigation). They found gaze directed

navigation was most effective for absolute navigation and pointing navigation was best

for relative navigation. We note that our image plane navigation techniques combine

the best aspects of both techniques. For instance, to perform absolute navigation to a

target object using the sticky finger selection technique, a user would move their index

finger over the target object, signal to the computer to select, move their finger to their

eye (thereby navigating all the way to the object), and then signal to the computer to

end the navigation. An example of a relative navigation task is to move in front of a

bookshelf. Using image plane techniques, a user can select the bookshelf, then in

combinations of head and hand movements quickly move to a position some distance
in front of the bookshelf.

8 Future Work

We intend to continue our investigation of user interfaces for IVE's by continuing

to refine our existing interfaces through user testing and by experimenting with new
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interface techniques that push the state of the art. There are a number of key areas that
we will focus on:

• Composite Interaction Techniques
• User Studies and Pilot Studies

• Shared Environments

• Dynamic Transitions between Desktop and Immersive VR Systems

• Interaction in Larger Environments

We discuss each of these items further below.

8.1 Composite Interaction Techniques

We now have a suite of basic interaction techniques. The next step towards more

effective systems is to explore how these techniques work together. We are currently

examining all the techniques we have developed in isolation; there is no means to

dynamically switch between techniques. Therefore, there is room to experiment with

how well these techniques work together, and how they can be incorporated into a

system. Mark Mine at UNC and Carlo Sequin at Berkeley have been working on

understanding how immersive VR techniques work together for modeling task, and

how the users can dynamically indicate which interaction technique they want to use

[21].

8.2 User Studies and Pilot Studies

The studies we have done to date have proven very useful in determining the success

or failure of specific interface designs. We believe that formal usability testing for the

image plane techniques is required. Although we have performed an informal evalua-

tion, we need more rigorous testing to determine how the speed and accuracy of these

techniques compare to more established techniques like laser pointing and spotlight
selection.

8.3 Shared Environments

The appearance of interaction techniques to other users in a shared virtual

environment is another open question for investigation. If the user selects an object, we

must decide how this appears to an observer standing nearby or at a distance.

Possibilities include showing the object floating to the user's hand. We have published

one paper on this topic [8] and are investigating it further.

8.4 Dynamic Transitions between Desktop and Immersive VR Systems

We envision a system that allows users to freely switch between desktop and

immersive VR depending on which type of environment is most appropriate for the

task the user wishes to perform. We are currently exploring this type of system using

an Active Desk, LCD shutter glasses for stereo viewing, and six degree-of-freedom

tracking devices in conjunction with a workstation desktop environment for a
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modeling task. Using the Sketch system [27] a user creates geometry at the desktop,

but, when appropriate, can transition into an immersive environment consisting of the

same model.

8.5 Interaction in Larger Environments

The techniques we have been working on are best suited for relatively small

virtual environments; that is, environments in which objects are within eye sight and,

in particular, environments where objects are distinguishable without navigating.

There is room for exploring interaction techniques for much larger environments.

9 Publications and Reports Related to this Grant

* Ayers, M.R., and Zeleznik R.C., The Lego Interface Toolkit. Computer Graphics

(Proceedings of the ACM Symposium on User Interface and Software Technology

(ULST)), '96, pp. 97-98.

• Forsberg, A., Herndon, K.P. and Zeleznik, R. Effective Techniques for Selecting

and Direct-Manipulation of Local Objects in Immersive Virtual Environments.

Computer Graphics (Proceedings of the ACM Symposium on User Interface and

Software Technology (UIST)), '96, pp. 95-96.

• Pierce, J.S., Forsberg, A., Conway, M.J., Hong, S. P., Zeleznik, R.C., and Mine, M.

Image Plane Interaction Techniques in 3D Immersive Environments. Proceedings

of 1997 Symposium on Interactive 3D Graphics, (Providence, Rhode Island, April

27-30, 1997).

10 Brown Personnel

The Brown Graphics Group, directed by Professors Andries van Dam and John F.

Hughes, is a team of Ph.D., Masters, and undergraduate students and full-time staff.

Professor van Dam, the principal investigator of this research, is also currently the

Director of the NSF Science and Technology Center for Computer Graphics and

Scientific Visualization. He and John Hughes are co-authors of the standard computer

graphics textbook, Computer Graphics, Principles and Practice, along with James Foley
and Brown Ph.D. Steven Feiner. Van Dam is a co-founder of ACM SIGGRAPH and co-

founder and first chairman of Brown University's Computer Science Department. The

full-time staff of the Graphics Group includes the Director of Research (Bob Zeleznik),

a Research Scientist (Timothy Miller), a User Interface Developer (Andrew Forsberg),

an Educational Outreach Director (Anne Morgan Spalter), and a Software Engineer/

Researcher (Loring Holden). A number of graduate and undergraduate students

complement the group by assisting on various research projects. The Media

Coordinator (Mark Oribello) and three part-time students support computers, video-

teleconferencing, and the group's other AV equipment. Andrew Forsberg was the

principle researcher being funded by this grant.
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11 Facilities and Equipment at Brown

The facilities at Brown include a variety of workstations from HP, DEC, Sun and

SGI. Our Virtual Reality Lab contains a Fakespace Labs BOOM, a Virtuality Visette Pro

Head-Mounted Display, a Virtual Technologies CyberGlove, and an Ascension

extended-range Bird tracker. We also use a StereoGraphics VR setup (LCD-shutter

glasses and two Logitech 3D mice). An Active Desk built by Input Technologies, Inc.

(ITI) was recently donated to our lab by Alias/Wavefront. We have two Phantom

haptic feedback devices made by Sensable Technologies. We also have a teleconference

system which uses a dedicated T1 line to connect us to the four other sites of the NSF

STC Center for Computer Graphics and Scientific Visualization. A full audio/video

non-linear editing system is used to record footage directly from workstation screens

and to edit videotapes.

We also maintain a World Wide Web site which contains general information

about our group and research projects:

(http://www.cs.brown.edu/research/graphics/)
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